Environmental & Water Quality m
Operational Studies

TECHNICAL REPORT E-83-8

A BOUNDARY-FITTED COORDINATE
CODE FOR GENERAL TWO-
DIMENSIONAL REGIONS
WITH OBSTACLES AND
BOUNDARY INTRUSIONS

By Joe F. Thompson

Department of Aerospace Engineering
Mississippi State University
Mississippi State, Miss. 39762

March 1983
Final Report

prepared for ~ Office, Chief of Engineers, U. S. Army
Washington, D. C. 20314

Under Contract No. DACW39-78-C-0054
(EWQOS Task Il1A.4)

Monitored by ~ Hydraulics Laboratory
U. S. Army Engineer Waterways Experiment Station
P. O. Box 631, Vicksburg, Miss. 39180




Unclassified
SECURITY CLASSIFICATION OF THIS BAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

Technical Report E-83-8

A. TITLE (and Subtitlo) 5. TYPE OF REFDRT & PERIOD COVERED

A BOUNDARY-FITTED COORDINATE CODE FOR GENERAL

TWO~-DIMENSTIONAL REGIONS WITH OBSTACLES AND Final report

BOUNDARY INTRUSIONS 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a} 8. CONTRACT OR GRANT NUMBER(s)
Contract No.

Joe ¥, Thompson DACW39-78-C-0054

5. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Mississippil State University AREA & WORK UNIT NUMBERS

Department of Aerospace Engineering EWQOS Task IITA.4

Mississippi State, Miss. 39762

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office, Chief of Engineers, U. 5. Army March 1983

Washington, D. C. 20314 13. NUMBER OF PAGES

80

4. MONITORING AGENCY NAME & ADDRESS(f different from Controlling Olfice) 15. SECURITY CLASS. (of thls raport)

U. S. Army Engineer Waterways Experiment Station
Hydraulics Laboratory
P. 0. Box 631, Vicksburg, Miss. 39180

Unclassified
15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT {of thla Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract enteted in Block 20, if ditfereni from Report)

18. SUPPLEMENRTARY NOTES

Available from National Technical Information Service, 5285 Port Royal Road,
Springfield, Va. 22151.

19, KEY WORDS (Continue on revarse sida lf necesaary and identity by block number)

Boundary value problems Differential equations
Computer programs Finite difference equations
Coordinates Numerical analysis

129, ABSTRACT (Contfoue am reverss side if meceseary aod identifi by block number)

A code (WESCPR) for the generation of boundary-fitted coordinate systems
for general two-dimensional regions with boundaries of arbitrary shape and with
internal obstacles and boundary intrusions, arbitrary in shape and number, is
described and instructions for input and use are given. The coordinate system
is generated from the numerical solution of a system of elliptic partial
differential equations with provision for controlling the spacing of the
coordinate lines in the field. The transformed (computational) region is

{Continued)

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (Wkers Data Entered)

FORM
DD . an7 1473  Eormion of 1 nov 65 1S OBSOLETE




Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entorsd)

20. ABSTRACT (Continued).

rectangular with the obstacles and intrusions transformed to slits and/or
slabs. A small code to distribute points on various fundamental curves with
exponential concentration is also described. This front-end code can be used
to construct boundary point distributions for input to the coordinate code.

A plot code for the coordinate system is also ineluded. The boundary-fitted
coordinate systems penerated by this code may be used as a basis for the
numerical solution of partial differential equations for any physical problem
of interest. This procedure will be particularly useful where numerical models
are used to analyze flow problems with complex boundary conditions. Typical
examples are riverine analysis or the design and evaluation of selective
withdrawal outlet works.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)




PREFACE

The developments reported herein were sponsored by the Office, Chief
of Engineers, U. S. Army, under the Environmental and Water Quality
Operational Studies (EWQOS) Program, through the work unit (CWIS No. 31604)
entitled "Techniques to Meet Envirommental Quality Objectives for
Reservoir Releases." The effort was supported by Task IIIA.4, "Selective
Withdrawal Characteristics of Various Outlet Configurations."

This project was conducted during the period June 1978 to May 1982
as a part of a Contract No. DACW39-78-C-0054 with Mississippi State
University (MSU) to develop a boundary-fitted coordinate numerical
hydrodynamic code for reservoir selective withdrawal. The developments
reported herein were conducted by Dr. Joe F. Thompson of the Department
of Aerospace Engineering, MSU. This report was written by Dr. Thompson.

Mr. Mark S. Dortch of the Reservoir Water Quality Branch (RWQB),
Hydraulic Structures Division, and Dr. Billy H. Johnson of the
Mathematical Modeling Group, both within the Hydraulics Laboratory,

U. 8. Army Engineer Waterways Experiment Station (WES), monitored the
contract. Program Manager of EWQOS was Pr. Jerome L. Mahloch, WES
Environmental Laboratory. Dr. John Harrison was Chief, EL.

Commanders and Directors of WES during this effort were COL John L.

Cannon, CE, COL Nelson P. Conover, CE, and COL Tilford C. Creel, CE.

Mr. F. R. Brown was Technical Director.



This report should be cited as follows:

Thompson, J. F. 1983. "A Boundary-Fitted Coordinate Code
for General Two-Dimensional Regions with Obstacles and
Boundary Intrusions,”" Technical Report E-83-8, prepared

by Mississippi State University, Mississippi State, Miss.,
for the U, 8. Army Engineer Waterways Experiment Station,
CE, Vicksburg, Miss.



Table of Contents

PREFACE. . . & v v v v vt vt e o e s o e e e e e
INTRODUCTION . . & v v v v v v v o st e s e e e w s
PART A--ELLIPTIC GENERATION SYSTEM . . . . . . . . . .
ELLTIPTIC GENERATION SYSTEM . . . . & & 4+ « & o« o « « =

Basic Tdeas . v v v v v v it e e e e e e e e e

Mathematical Development . . . . + v & + « o & o

Types of Boundary-Fitted Cooxrdinate Systems . . .

Data Required for Generation of Boundary-Fitted
Coordinates . . . . & ¢ « & v 4 o o o 4 0 o . .

Computer Time Required for Generation of Boundary-
Fitted Coordinates . . + + « « « + v ¢« v & v . .

COORDINATE SYSTEM CONTROL . . . . . . . . « « « « .« . .

Attraction to Other Coordinate Lines and/or Points

Attraction to Space Curves and/or Points . . . . .

Control Functions from Boundary~Point Distributions

SYSTEM CONFIGURATION . . .« .+ & ¢ & v ¢ o v o s o« o

REFERENCES . . . . « ¢« v &« 4 v v a v s o s e v e v e

PART B--COORDINATE CODE s e e e e e e e s e e e e e s

.
.
.
3
-
.
.
-
.
.
(3
*
.

WESCPR (Coordinate System)

Boundary Configurations . . . . . . . . . . . . .
Control Functions . . + + + & &+ v o + o« « + o 4 »
Iterative Solution . . « . v ¢ « « « &+ s & 2 &+ +
Code Operation . . . . . .+ ¢ ¢ ¢« v ¢ « « s o« « o =

16

21

28

31
32
32
34
37
38
48
49
49
50
57
58

60



Table of Contents (continued)

LINES (Boundary Segments) . . . .

Generation of Curves . . . .

. . .

Points

Exponential Concentration of
CSPLPT (Plot) . . . . « + - . .
WESCPR INPUT INSTRUCTIONS . . . .
LINES INPUT INSTRUCTIONS . . . .
CSPLAT INPUT INSTRUCTICNS . .

SAMPLE RUNSTREAMS . . . . . . . .

70
71
72
76
77

78



A BOUNDARY-FITTED GCOORDINATE CODE FOR GENERAL TWO-DIMENSIONAL
REGIONS WITH OBSTACLES AND BOUNDARY INTRUSIONS

INTRODUCTION

The use of numerically generated boundary-fitted curvilinear coor-
dinate systems as the basis for numerical solution of partial differential
equations on arbitrary regions is now well established. A comprehensive
survey of the generation and use of these coordinate systems has recently
appeared, Ref. [1], and the proceedings of a recent symposium devoted
to this area, Ref. [2], cover the basic techniques involved, as well as
applications in many areas,

Such coordinate systems have the property that some coordinate line
is coincident with each segment of the boundary in the physical region,
so that the complication of boundary shape is effectively removed from
the problem. 1In the past decade the numerical generation of curvilinear
coordinate systems has provided the key to the development of finite
difference solutions of partial differential equations on regions with
arbitrarily shaped boundaries. Although much of the impetus for these
developments has come from fluid dynamics, the techniques are equally
applicable to heat transfer, electromagnetics, structures, and all other
areas involving field solutiomns.

With coordinate systems generated to maintain coordimate lines_
(surfaces in 3D) coincident with the boundaries, finite difference codes
can be written which are applicable to general configurations without
the need of special procedures at the boundaries. Even when the bound-

aries are in motion, the use of such coordinate systems allows all



computation to be done on a fixed grid with a uniform square mesh in the
transformed plane., This greatly simplifies the coding, particularly

with regard to boundary conditions, which can now be represented without

need of interpelation. It is also possible to distribute the curvilinear
coordinate lines in the physical plane with concentration of lines in regions
of high gradients while maintaining the square grid in the transformed
(computational) plane.

With such systems, the grid points may be thought of as a finite
set of observers of the physical solution, stationed so as to be most
effective in covering all of the action on the field. The structure of
an intersecting net of families of coordinate lines allows the observers
to be readily identified in relation to each other. This results in
much more simple coding than would the use of a triangular structure
or a random distribution of points. The grid generation system provides
some influence of each observer on the others so that when one moves
to get into a better position, its neighbors will follow in order to
maintain smooth coverage of the field. The curvilinear coordinate system
thus should cover the field, with coordinate lines (surfaces) coincident
with all boundaries. The distribution of lines should be smooth, with
concentration in regions of high gradient.

Numerical solutions of partial differential equations are done on
the curvilinear coordinate system by first transforming all partial
derivatives (or integrals) analytically so that the curvilinear coordinates,
rather than the physical coordinates, become the independent variables.
Normal and tangential derivatives at boundaries are similarly transformed.

(These transformation relations are given in Ref. [3].) The result is a



set of partial differential equations and boundary conditions in which
all derivatives (and integrals) are with respect to the curvilinear coor-
dinates. These equations may then be expressed as difference equations
on the square grid that is inherent in the transformed plane. There is
thus no need for interpolation regardless of the shape of the boundaries
or the distribution of the curvilinear coordinate lines in the field.

The present report concerns a code for the genération of boundary-
fitted coordinate systems for general 2D regions with boundaries of ar-
bitrary shape and with internal obstacles and boundary intrusioﬁs, arbi-
trary in shape and number. The code, referred to as WESCHR, is described
and instructions for input and use are given. Examples of the applica-
tion of this code are given in Ref. [4]-~[6]. The coordinate system is
generated from the numerical solution of a system of elliptic partial
differential equations with provision for controlling the spacing of the
coerdinate lines in the field. The transformed (computational) region
is rectangular with the obstacles and intrusions transformed to slits
and/or slabs. (This type of transformed configuration and its use are
discussed in Ref. [3].) A small code to distribute points on various
fundamental curves with exponential concentration is also described.

This front-end code can be used to construct boundary point distributions
for input to the coordinate code. A plot code for the coordinate system
is also included. The boundary-fitted coordinate systems generated by
this code may be used as a basis for the numerical solution of partial
differential equations for any physical problem of interest.

The elliptic generation system is discussed in Part A, and the op-

eration and use of the codes are covered in Part B,



PART A

ELLIPTIC GENERATION SYSTEM

ELLIPTIC GENERATION SYSTEM

The generation of boundary-fitted coordinates from elliptic systems
and the use therecf in the numerical solution of the Navier-Stokes e-
quations is surveyed in Ref. [1]. The foundations of elliptic generation
systems are discussed in detail in Ref. [7], and basic configurations of
the transformed plane are covered in Ref. [3]. The discussion in this
section is an introduction to the subject given by Johnscn and Thompson

in Ref. [5] and is incorporated here for convenience.

Basic Ideas

Suppose one is interested in solving a differential system involving
two concentric cireles, such as shown in Fig. 1, where r = constant = Ny
on the inner circle and r = constant = nz on the outer circle, and ©
varies monotonically over the same range over both the inner and outer
boundaries, i.e., 0° to 360°.

A cylindrical coordinate system is the obvious choice since a coor-

dinate line, i.e., a line of constant radius, coincides with each boundary.

If one now pulls the Interior regions between the two circles
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Figure 1. Transformation of domain between
concentric cylinders



apart at 6= 0° (or 6= 360°) and folds outward, it is easy to visualize
the region Dl becoming the rectangular region D2. ‘Likewise, it should
be obvious that the right and left sides of the rectangle are reentrant

boundaries since ¢ = 0° and § = 360° are coincident in region D If

1°
one computes a derivative in the cylindrical system at g = 0°, values
at the points marked x and o on both sides might be used. Thus, these
same points, as shown in the rectangular region, would be used for a

similar derivative in region D This is the reason for calling these

X
boundaries reentrant boundaries. As shown, the boundary of the inner
circle becomes the bottom of the rectangular region while the boundary
of the outer circle becomes the top.

The general boundary-fitted system is completely amnalogous to the
gsystem discussed above. In Fig. 2 the curvilinear coordinate, n, is
defined to be constant on the inner boundary in the same way that the
curvilinear coordinate, r, is defined to be constant on the inner circle
in the cylindrical coordinate system. Similarly, n is defined to be
constant at a different value on the outer boundary. The other curvi-

- linear coordinate, &, is defined to vary monotonically over the same
range on both the inner and outer boundaries, as the curvilinear coordi-
nate, 8, varies from 0 to 27 arocund both the inner and outer circles in
cylindrical coordinates. It would be just as meaningless to have a dif-
ferent range for ¢ on the inner and outer boundaries as it would be to
have 6 increase by something other than 27 around one of the circles in
cylindrical coordinates. It is this fact that ¢ has the same range on

both boundaries that causes the transformed field to be rectahgular.

Note that the actual values of the coordinates, n and £, are irrelevant,

10
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11



in the same way that r and 0 may be expressed in different units in cylin-
drical coordinates.

Now that the values of the coordinates, n and E, have been completely
gspecified on all the boundaries of a closed field, it remains to define
the values in the interior of the field in terms of these boundary values,
Such a task immediately calls to mind elliptic partial differential
equations, since the solution of such an equation is completely defined
in the interior of a region by its values on the boundary of the region.
Thus if the coordinates & and n are taken as the solutions of any two
elliptic partial differential equations, say L(&) = 0, D(m) = 0, where
L and D represent elliptic operators, then £ and n will be determined
at each point in the interior of the field by the specified.values on
the boundary. One condition must be put on the elliptiec system chosen,
since the same pair of values (&,N) must not occur at more than one point
in the field or the coordinate system will be ambiguous. This condition
can.be met by choosing elliptic partial differential equations exhibiting
extremum principles that preclude the occurrence of extrema in the in-
terior of the field.

This may be illustrated with resort to the governing equation for
a stretched membrane. Consider a membrane attached to a flat plate
around a closed circuit of arbitrary shape as shown in Fig. 3. Now let
a cylinder of arbitrary flat cross section be pushed up through the plate,
stretching the membrane upward. The vertical displacement, h, of the
membrane will be described by Laplace's equation, v2h = 0, with h = hl
and h2, respectively, on the circuits of contact with the plate and cyl-

inder. If equally spaced grid lines encircling the cylinder had been

12
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Figure 3. Illustration of extremum principle
for Laplace'’s equation
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drawn on the membrane before displacement, these lines would appear to
move closer to the cylinder when viewed from above after displacement
of the membrane. HNone of these lines would cross, however.

Now let pressure be applied on the upper side of the membrane as
diagrammed in Fig. 4a. This will cause the slope at the cylinder to
steepen, with the effect that the lines will appear to be drawn even
closer to the cylinder but still without cressing. This sitvation cor-
responds to the Poisson equation, V2h = p, where p is the applied pressure.
If a variable pressure is applied on both sides of the membrane to a
gsufficient degree, it is possible to make the membrane assume an S-shape
as shown in Fig. 4b. 1In this case the encircling lines have crossed,
and, consequently, a point on the plate can no longer be identified by
specifying the encircling line that it lies below (together with a radial
ray). This latter case corresponds to a right-hand side of the Poisson
equation that is not of one sign over the entire membrane, in which case
the extremum principles of Poisson's equation are lost.

Note, however, that if the differential pressure that is applied
across the membrane is not toc large, the S-shape will not be reached.
In this case the lines do not cross, but rather the lines seem to con-
centrate near a line in the interior of the field. Thus the existence
of an extremum principle is a sufficient condition to prevent double-
valuedness in the coordinate system but is not a necessary condition.

Care must be exercised in its absence, however.

14
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Mathematical Development

From the discussion above, a logical choice of the elliptic gen~
erating system is Poisson's equation. Thus, based upon Fig. 2, the

basic problem is to solve

Er’x:-;-lh gyy =P
(1)
n _+n_ =
xX ¥y Q
with boundary conditions,
£ = El(x,y) on Fl
n = constant = N, on [
1 1
(2)
g = Ez(x,y) on T2
N = constant = N, on Tz

The arbitrary curve joining Pl and F2 in the physical plane specifies

a branch cut for the multiple-valued funection, E(x,y). Thus the values

of the coordinate functions x(&,n) and y(,n) coincide along T,

and T and these functions and their derivatives are continuous from

42

P3 to PA' Therefore boundary conditions are neither required nor allowed

on P3 and PA' As previously noted, boundaries with these properties
are designated reentrant boundaries.

The functions P and Q may be chosen to cause the coordinate lines

to concentrate as desired, in analogy with the membrane discussed above.

16



As discussed in Ref. [7], negative values of Q result in a superharmonic
solution and cause n-lines to move toward the n-line having the lowest

value of n, while positive values have the opposite effect., Considering

the § solution to be superharmonic results in the interior of the z =
constant lines being rotated in a counterclockwise direction in the physical
plane; whereas if the [ - equation is subharmonie, i.e., P is positive,

the lines are rotated in the clockwise direction. These effects

are discussed in more detail below. It has been found convenient, as

discussed in Ref. [7], to redefine the control functions as

P= sy (2 7, )P

3% (XE2 + Ygz)Q

el
]

A major purpose of this coordinate system control is to concentrate
lines in viscous boundary layers near solid surfaces, and some automated
procedures for this purpose have been developed (cf. Ref. [7]). Control is
also useful to improve grid spacing and configuration when complicated
geometries are involved.

Since all numerical computations are to be performed in the rec-
tangular transformed plane, it is necessary to interchange the dependent
and independent variables in Eq. (1). Using the relations given in

Ref. [3], Eq. (1) becomes

It
o

uxgg - ZBXEH +-Yxnn + anE + nyn
(3)

§
[w]

Weg = 2By + W, +oaby + vy =

17



where

n n
Bm X vy,
y=xZ+ yé
J =

Jacobian of the transformation = xéy - x yE
: n n

with the transformed boundary conditiomns

=}

x = fl(i,nl) nT

¥y = gl(g’nl) on Pi

X = fz(g,nz) on Fg
y = gz(E,nz) on '}

Again considering Fig. 2, the Poundary functions fl’ f2, 81> and =)

are specified by the lnown shape of the contours rl and Iy and the speci-
fied distribution of E thereon. Boundary data are neither required nor
allowed along the reentrant boundaries T3 and Tg' Although the new
system of equations is more complex than the original system, the boundary
conditions are specified on straight boundaries and the coordinate spacing
in the transformed plane is uniform. Computationally, these advantages

far ourweigh any disadvantages resulting from the extra complexity of

the equations to be solved.

18



The boundary-fitted coordinate system so generated has a constant
n~ line coincident with each boundary in the physical plane. The -
lines may be spaced in any manner desired around the boundaries by
specification of %,y at the equispaced &- points on the Ff and F§
lines of the transformed plane. As noted above, the entire side boundaries
are reentrant boundaries, and thus neither require nor allow specification
of i,y thereon.

Now the rectangular transformed grid is set up to be the size
desired for a particular problem. Since the values of £ and n are
meaningless in the transformed plane, the p-lines are assumed to run
from 1 to the number of p-lines desired in the physical plane. Likewise,
the g-lines are numbered 1 to the number specified on the boundaries of
the physical plane. The grid spacing in both the £ and n directions of
the transformed plane is taken as unity. Second-order central difference
expressions are used to approximate all derivatives.

Only one of a pair of reentrant boundaries is considered as a com-
putation line since the (x,y) are equal on both. As an example of how
a reentrant boundary is handled, consider the grid in Fig. 53 where "o"

indicates a computation point and "A" a boundary point. The derivative

of x with respect to £ along i = 1 would be written as

ox _
EEI N Bl S LA (4)

L,j

Again, it should be stressed that all computations are performed
on the rectangular field with square mesh in the transformed plane. The
resulting set of nonlinear difference equations, two for each point, is

solved by accelerated Gauss-Seidel (SOR) iteration using overrelaxation.

i9
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Some discussion of this technique is presented in Ref. [8].

It might be noted that both orthogonal and conformal transformations
are special cases of the generation of boundary-fitted coordinate systems
as the solutions of elldiptic partial differential systems. In both of
these cases the curvilinear coordinates satisfy Laplace's equation with
one coordinate constant on each boundary, and the normal derivative of
the other coordinate equal to zero on each boundary. A conformal system
also requires a certain relation between the range of the twe curvilinear
coordinates.

The same procedure may be extended to regions that are more than
doubly connected, i.e., have more than two closed boundaries, or equiv-
alently, more than one body within a single outer body. A river reach
containing more than one island would be an example. One such trans-

formation for such a problem is illustrated in Fig. 6.

Types of Boundary-Fitted Coordinate Systems

The above discussion of the generation of boundary-fitted coordinates
has centered around the idea of using branch cuts to reduce multiply
connected regions to simply connected ones in the transformed plane,

An example using branch cuts is sketched in Fig. 7. Heré the body in

the field transforms to the entire bottom boundary of the transformed
plane, while the entire surrounding boundary, 1 - 2 - 3 = 4 - 5 ~ 6,
transforms to the top boundary of the transformed plane. The sides of

_the transformed plane are reentrant boundaries, corresponding to the cut,

8 =1 and 7 - 6, in the physical field. Thus, in the difference equations,
points lying just to the right of the right boundary are identical with

corresponding points just to the right of the left boundary. This is

21
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Figure 6. Boundary-fitted coordinates for a river
containing two islands

22



PHYSICAL PLANE

REENTRANT BOUNDARIES

TRANSFORMED PL.ANE

Figure 7. Example of coordinates generated using a
branch -cut. Placement of body is such that sides
are reentrant boundaries
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the same type of circumstance that occurs with the familiar cylindrical
coordinate system, where 6§ = 361° is the same point as § = 1°, Similarly,
peints just outside the left boundary are coincident with points just
inside the right boundary.

Many variations of this type of coordinate system can be produced,
cf. Ref. [ 3]. For instance, the transformed plane coxrresponding to the
same physical field shqwn in Fig. 7 can be rearranged as shown in Fig.
8. Now the reentrant boundary, corresponding to the cut, is located on
a portion of the bottom of the transformed plane. The coordinate lines
that result from these two types of arrangements of the transformed plane
are shown on each of the figures. As with all the boundary-fitted coor-
dinate systems, the grid is square in the transformed plane regardless
of the line configuration in the physical plane.

Multiple-body fields can also be transformed to simply connected
regions, an example of which is shown in Fig. 9 . Again there are many
different possible arrangements of the transformed plane, all of which
are created by sliding the boundary segments around the rectangular
boundary of the transformed plane. A number of examples are given in
Ref. [ 3] and Ref. [8].

The other type of coordinate system transformation available leaves
the multiplicity of the region unchanged. In this case, bodies in the
interior of the physical field are transformed to rectangular slabs or
even slits in the transformed plane. Three different possibilities are
shown in Fig. 10 for the physical plane shown in Fig. 7. 1In the case of
slits, the physical coordinates and solution variables din general have

different values at points on the two sides of the slit, even though such

24
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points are coincident in the transformed plane. This does not introduce
any approximations, but simply adds a little more bookkeeping to the
code. ¥Fields with more than one body in the intérior simply result in
a like number of slabs and/or slits in the transformed plane.

Comparison of all of the above figures shows that different types
of transformation may be more appropriate for different physical config-
urations. A further example of this is the configuration in Fig. 11,
shown with three variations. Generally, the slit/slab form is more
appropriate for channel-like physical configurations having bodies in
the interior, while the other form works particularly well for "unbounded"
regions involving external flow about bodies and for regions having an
outer boundary that forms a continuous circuiﬁ without pronounced corners
around the field. The slab is generally superior to the slit unless
the boundary has a sharp point. The case of a single channel without
any interior bodies is the same in either form. An example of a river
reach containing two islands, using horizontal slits rather than the

branch cuts previously presented in Fig. 6,is given in Fig. 1Z.

Data Required for Generation of Boundary-Fitted Coordinates

The basic input or data required to generate a boundary-fitted
coordinate system are the physical coordinates of points on the boundaries.
For example, with reference to Fig. 7, the coordinates of points on the
body from 8 around to 7 would be required, with these points being
spaced in any manner desired as long as there is a continuous progression
from 8 to 7. Similarly, the (x,y) values for points on the cuter boundary

from 1 to 2, etec., on around to 6 would be required. Again these points

28
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may be spaced around the boundary as desired, with no restriction as to
how many points lie on each boundary segment, e.g., between 1 and 2 or
between 4 and 5, provided that only the total number of points from 1
around to 6 is the same as from 8 to 7. The coordinates of points must
be specified on the entirety of these lines. The coordinates of points
on reentrant segments of the boundary in the transformed plane, e.g., 1
to 8 and 6 to 7, are not specified but are free to be determined by the
solution.

Similarly, with reference to Fig. 10a, the coordinates of outer
boundary points are required in the slab/slit transformations. In
addition, body points from 6 to 1 on the lower half of the body and
from 1 to 6 on the top half are required. No calculations would be
made on the slab sides of Figure 10c .or slits of Figures 10a and 10b
since wvalues af such points are fixed.  Points in the interior of a
slab are irrelevant. As always, points may be spaced as desired around

the bodies and outer boundary segments.

Computer Time Required for Generation of Boundary-Fitted Coordinates

Ref. [ 8] indicates that the typical time required to generate a
one-body coordinate system without coordinate system control (the
functions P and Q are set to zero) is about 2 min on a UNIVAC 1106 com-
puter for a 70 x 30 field (70 points on the body). If P and Q are not
zero, s0 that the spacing of coordinate lines is controlled, the computation
time increases. Multiple~body coordinate systems typically require about
6 min for a 70 x 40 field. If these same computations were to be made

on a CDC-7600 computer, the times quoted above would be reduced by perhaps
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an order of magnitude or more. Therefore, the cost of generating

boundary-fitted coordinate systems for use in numerical models will

be generally insdignificant.

COORDINATE SYSTEM CONTROL

Control of the coordinate line spacing in the field can be exercised
through the non-zero values given to the Laplacian of the curvilinear
coordinates as in Eq. (1), as noted above. With a zero Laplacian, the
lines tend to be closely spaced near convex segments and more widely
spaced near concave segments. A negative value of the Laplacian causes

the lines to move toward lower values of the curvilinear coordinate.

Attraction to Other Coordinate Lines and/or Points

This effect is utilized as in Ref. [ 8] to achieve attraction of
coordinate lines to other coordinate lines and/or points by taking the

form of the control functions to be

I
P(E:T]) = - z ai Sign(g - Ei)exp(—cila = Ei[)
i=1

(53

m

- E b, sign{& - Ei)EXP{-di[(E - Ei)2 + (n - ni)z]%}

J=1

and an analogous form for ((f,n) with t and n interchanged. The effects
of such control is illustrated in Refs. [ 7] and [ 8]. The efficacy
of control to improve the accuracy of a physical solution done on the
coordinate system has been noted.

In the P function, the effect of the amplitude, ass is to attract

£ = coordinate lines toward the Ei-line, while the effect of the amplitude
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bi is to attract E-lines toward the single point (gi,ni). Note that
this attraction to a point is actually attraction of g-lines to a point
on another g-line, and, as such, acts normal to the g-line through the
point. There is no attraction of p-lines to this point via the P
function. In each case the range of the attraction effect is determined
by the decay factors, ¢y and di' With the inclusion of the sign changing
function, the attraction occurs on both sides of the g-line, or the
(Ei,ni) point, as the case may be. Without this funetion, attraction
occurs only on the side toward increasing &, with repulsion occurring on
the other side. A negative amplitude simply reverses all of the above—
described effects, i.e., attraction becomes repulsion and vice versa.
The effect of the ¢ function of n-lines follows analogously. It should
be noted that P and Q are discontinuous because of the sign function and
are equal to sums of second derivatives. As a consequence, the coordinates
have continuous first derivatives but discontinuous second derivatives
at controlled locations.

In the case of a boundary that is an n-line, positive amplitudes
in the @ funetion will cause n-lines off the boundary to move closer
to the boundary, assuming that n increases off the boundary. The effect
of the P function will be to alter the angle at which the £-lines inter-—
sect the boundary, since the points on the boundary are fixed, with the
€-lines tending to lean in the direction of decreasing £. If the boundary
is such that N decreases off the boundary, then the amplitudes in the 0
function mustbe negative to achieve attraction to the boundary, 1In
any case, the amplitudes a, cause the effects to occur all along the
boundary, while the effects of the amplitudes bi occur only near se-

lected points on the boundary.
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Attraction to Space Curves and/or Points

If the attraction line and/or the attraction points are in the
field, rather than on a boundary, then the attraction is not to a fixed
line or point in space, since the attraction line or points are themselves
solutions of the systeﬁ of equations, the functions P and () being functions
of the variables £ and n. It is, of course, also possible to take these
control functions as functions of x and y, instead of ¢ and n, and achieve
attraction to fixed lines and/or points in the physical field. This
case becomes somewhat more complicated, since it rust be ensured that
coordinate lines are not attracted parallel to themselves. The following
development was givén in Ref, [9].

Recall that in the above discussion, n-lines are attracted to other
‘n-1lines , and £-lines- are attracted to other f-linmes . It is unreasonable,
of course, to attempt to attract n-lines to g-lines , since that would

have the effect of collapsing the coordinate system:

E-line

n-1line

When, however, the attraction is to be to certain fixed lines in
x-y space, defined by curves y = f(x), care must be exercised to avoid
attempting to attract n— or £-lines to specified curves that cut the

n- or E~lines at large angles. Thus, in the figure below,
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it is unreasonable to attract E-lines to the curve f(x), while it is
natural to attract the n-lines to f(x).

However, in the general situation, the specified line f(x) will not
necessarily be aligned with either a £- or n-line along its entire length.
Since it is unreasonable to attract a line tangentially to itself, some
provision is necessary to decrease the attraction to zero as the angle
between the coordinate line and the given line f£(x) goes to 90°. This
can be accomplished by multiplying the attraction function by the cosine
of the angle between the coordinate line and the line f(x). It is also
necessary to change the sign on the attraction function on either sidé
of the line £(x). This can be done by multiplying by the sine of the
angle between the line f(x) and the vector to the point on coordinate
line.

These two purposes can be accomplished as follows. Let a general
point on the f-line be located by the vector R(x,y), and let the attrac-—
tion line y = £(x)} be specified by the collection of points ?(xi,yi),
i=1, 2, -——, n. Let the unit tangent to the attraction line be

(&)

t(xi,yi), and the unit tangent to a £-line be r

~
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The control functions P(x,y) and @{x,y) may then be logically taken as

I
[t,.x (R-58)] * k
P(x,y) = - ] a (t; » I(E)) = R - gj_')| = exp(-d |R - 8, )
i=1 ~ -t
(6)
n
[t.,x (R-5,)] - k
0x,y) == ] a,(e I(”)) = B _"gi! exp(-d,|R - S, ])
i=1 - -

where k is the unit vector normal to the two-dimensional plane. These

-~

relations are evident from the figure below:

E-1line

attraction line

Here the term ti - T(E) serves to decrease the attraction to zero as the

a~ ~

angle between the &-line and the attraction line approaches 90°. The
cross product term changes the sign of the control function on either
side of the attraction line to produce attraction on both sides of the
line. Again the strength and range of the attraction are determined by
the amplitude, ags and the decay factor, di’ respectively.

36



(£) (n)

These functions depend on x and y through both R and T or T , and
thus must be recalculated at each point as the iterative solutiom proceeds.
This form of coordinate control will therefore be more expensive than

that based on attraction to other coordinate lines,

There is no real distinction between "line" and "point'" attraction
with this type of attraction. '"Line'" attraction here is simply attraction
to a group of points that form a line f(x). If line attraction is speci-
fied, then the tangent to the line f£(x) is computed from the adjacent
points on the line, If point attraction is specified, then the "tangent"
must be input for each point. The tangents to the coordinate lines are

computed from the relations given im Ref. [3].

Contrel Functions from Boundary-Point Distributions

With the Laplacians of the coordinates equal to zero, the line
spacing in the field will not be greatly affected by the distribution
of the boundary points, except very near the boundaries. In fact, if
the control functions are not consistent with the boundary point dis-
tribution, very large changes in the metric coefficients will occur near
the boundaries. Values of the control functions may be determined from
the 1D boundary point distribution such that the line spacing in the
field will generally follow that on the boundary. This concept was in-
‘troduced in Ref. [10 ] and is discussed in Ref. [7] as generalized to 3D
in Ref. [11 J. However, in the use of control functions that are
1D, it should be noted that excessive concentration of lines can occur
near sharp convex corners as discussed in Ref. [7].

With Eq. (3) evaluated in 1D on a straight n-line conincident with

the xz-~axis, we have, since xn = YE = 0 in this case,
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qxgg =—aP(E)x€ (N

The reason for the choice of the form of the control functions in Egq. 3

becomes clear, since o cancels from this equation to leave

P(g) = _XEEIX (8)

£

Thus the control function, P(E), can be determined from the specified
boundary point distribution, x(&). Generalizing, x is replaced by arc
length along the Z~line , and the effect will be qualitatively the same
when this line is curved. (Compare Ref. [7] for more detail.)

If this value of the control function is then used throughout the
field, the £-1ine distribtuion in the field will generally follow the
specified distribution of the end points of these lines on the boundary.
With different point distributions on two boundaries, values of the
control function P(%,n) in the field between can be determined by 1D
interpolation in 7n between the values determined in the above manner on
the twe n-line boundaries. An analogous development applies for the
determination of the control function Q(g,n) from interpolation in
between 1D evaluations on two E-line boundaries. This interpolation

was introduced in Ref. [12 ] in a 2D coordinate system.

SYSTEM CONFIGURATION

In the present model, the physical field may have both external and
internal boundaries of arbitrary shape. The field in the transformed
plane is rectangular with rectangular holes corresponding to any internal

boundaries. This configuration is illustrated in Fig. 13. Boundary
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Figure 13. Example of coordinates generated in a
field containing a jetty and an island
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intrusions may be transformed either to portioms of the rectangular outer

boundary of the transformed region, as in Fig. 13, or to slabs protruding

inward from this boundary as in Fig. 14. A general discussion of possible
configurations is given in Ref. [3). Various outlet shapes and locationms,

as well as internal obstacles and boundary protrusions such as weirs,

can be trééted by the same code with only changes in the input. This

input consists of the physical cartesian coordinates of the points se-

~lected on each segment of the physica; boundaries. A small front-end

code was written to provide certain line segments (linear, quadratic,

and cubic polynomials) with linear or exponential distributions thereon

automatically.

The code automatically caleculates control functions P(g,n) and
Q(g,n) for the coordinate generation equations (3) from the boundary
point distribution as discussed above., These functions are calculated
from the 1D relations on each boundary segment and are interpolated
linearly dinto the field between opposing boundary sections in the
transformed plane.

In addition, attraction of coordinate lines to other coordinate
lines and/or points, and to specified lines and/or points in space, also
discussed above, is provided through input quantities. This input
consists of the coordinate lines and/or points, and the specified space
curves and/or points, to which the attraction is to be made and the ampli-

tudes and decay factors for the corresponding attractions.

40



1
A SRR RN

\

W s

—

1
Y ——

. I i __% 13
1 { e
19 | % "

20

PHYSICAL PLANE

10

20

TRANSFORMED PLANE

Figure 14. Boundary-fitted coordinates for a
river containing dikes

41



Several examples of coordinate systems produced by this code are
given in Figs. 15-19. FExamples of applications of such systems appear

in Ref. [4]-[6]. Two further examples, together with complete input

listings for the code, follow the description of the code in Part B.
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Figure 17. Hypothetical estuary similar to

Delaware River (from B. H. Johnson, Waterways
Experiment Station, Vicksburg)
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PART B

COORDINATE CODE

The present code (WESC@R) differs from a previous version (TOMCAT)
described in Ref. [8] in that the latter does not provide for slits and/or
slabs in the interior.of the transformed plane. Also, branch cuts (if used)
in the present code are restricted to the entire left and right sides of
the outer rectangle in the transformed region. Finally, the present code
includes a more extensive means of coordinate line control, involving
attraction to space lines/or points and also involving determination from
boundary point distributions.

The code for the numerical generation of the boundary-fitted coor-
dinate system from the equations of Part A, together with a front-end
code to generate boundary point distributions and a plot code, is discussed
below. These codes were implemented on the CRAY-1l computer at the Air

Force Weapons Laboratory, Kirtland AFB, New Mexico.

WESC@R (Coordinate System)

This code generates the boundary-fitted coordinate system by solving
a set of elliptie partial differential equations by SOR iteration as
discussed in Part A, Attraction of coordinate lines to other coor-
dinatF lines and/or points,and to specified lines and/or points in space,
is included. The shape and configuration of the boundary are arbitrary,
except that the outer boundary must be closed. There may be an arbitrary
number of internal closed boundaries transforming to either slits or
slabs as discussed in Part A.

The input to this code consists of the point distribution on the

boundary of the region, several quantities in connection with the control
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of the coordinate line spacing, and the parameters associated with the
iterative solution process. This input is described in detail below.

The file output from the code LINES can be used directly as a part of
the input to this code from file 10, A simplified flow chart of WESCOR
is shown in Figure 20.

Boundary Configurations

Arrays. The dependent variable field arrays are X and Y, which contain
the cartesian coordinates (x,y) for each grid point. The indices (I,J)
of these arrays correspond to the curvilinear coordinates (&, n), and
run from 1 to TMAX and JMAX, respectively. The increments Af and An
in the difference expressions are thus equal to unity by construction.

( These increments cancel from all the difference equations and are thus
irrelevant.)

In order to treat slit configurations, for which a closed interior
boundary in the physical region is collapsed to a slit in the transformed
region, there are four other coordinatre arrays, XL, YL and XU, YU, which
contain the cartesian coordinates on the two sides of the slit. The
first index of these arrays corresponds to the location of the point
relative to the left end of horizontal slits, or relative to the lower
end of vertical slits, this end index being designated unity. The other
indgx indentifies the particular slit. For horizontal slits the coor-
dinates on the lower side are in XL and YL, while those on the upper
side are in XU and YU. Vertical slits have the coordinates on the left
side in XL and YL, and those on the right side in XU and YU.

There is also a field array LSLIT(I,J) containing the point type

for each point. This array identifies each point as being on a slit,
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adjacent to a slit, on a slab side, on an outer boundary, in the field,
or out of the computation region (inside a slab), as illustrated on the

diagram below:

5

e | » adjacent to slit

adjacent to slit
[ ]

T on slit . on slit

¢ field
on cuter g
boundary

on slab side
F

» inside slab
(out of region)

. . :
out of region #on outer boundary
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The coordinate system control functions P and @ for each point
are contained in the field arrays RXI(I,J) and RETA(I,J), respectively.
There are also arrays RXIL, RETAL and RXIU, RETAU, analogous to the
array XL, etc., discussed above, which contain the values of these
functions on the two sides of the slits. The acceleration parameters
for the iteration at each point are in the field array WACC(I,J).

Configuration types. The cartesian coordinates of the points on the

entire boundary of the physical region, i.e., the closed outer boundary
and any internal boundaries, must be input. There are two basic types
of overall configuration included in the code. In one the connectivity
of the transformed region is the same as that of the physical region,
i.e., the closed outer boundary of the physical region corresponds to a
closed outer boundary of the transformed region. With the other type,
one branch cut is introduced in the physical region so that the closed
outer boundary and one inner boundary of the physical region transform
to the bottom and top of a rectangle forming the outer boundary of the
transformed region. The left and right sides of the transformed région
then correspond to the branch cut in the physical region. Points on
these sides therefore are not input but rather are calculated as part of
the solution.

Rectangular outer boundary. If the outer boundary of the physical

region is to correspond to a rectangle forming the outer boundary of the
transformed region, then the points on this boundary can be input in
clockwise succession around the outer rectangle of the transformed region

as in the diagram below. If the outer boundary of the physical region
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is a circle, then the points on this circle can be generated internally
by the code, requiring input only of the radius (YINFIN) and cartesian
coordinates of the center (XHINF,YPINF) of the circle, together with
the cartesian coordinates of the angular position (AINFIN) and indices
(INFXI,INFETA) of the point at which the clockwise succession of points
around the outer rectangle is to start, and the total number of points
on the circle (NINF). As above, the points will be placed in clockwise
guccession around the circle or boundary of the physical region and
the rectangular boundary of the transformed region. The treatment of
the outer boundary is determined by the input parameter IBNDRY.

An alternative procedure for inputting the outer boundary is to input
each straight segment of this boundary of the transformed region as a
slab side in the manner described below for internal boundaries.

Tnternal boundaries (slits/slabs). Internal boundaries in averall

configurations of the former type introduced above correspond to either

slits or slabs in the transformed region:

o ~——
#1 #2 >_b
@ l #1 #3
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In the case of slits, the points are input in clockwise succession
beginning at the right end for horizontal slits or counter—clockwise be—
ginning with the top for vertical slits, and are placed in the arrays XL,
etc., described above., For slabs, the four sides are input independently
and the succession of points may be in either direction on each side.

In fact, it is not even necessary for the four sides of one slab to be input
in succession; the sides of all slabs in the field may be placed in any
order in the input. The coordinates of the points on slab sides are

placed directly in the field arrays X and Y. This input of boundary
segments corresponding to slits or slabs is accomplished as follows.

For horizontal slits, the &-indices(I) of the left and fight ends
areplaced in the arrays LBl and LB2, respectively. The n-index (J) of
the entire slit or slab side is placed in the array LB3. In the case
of vertical slits, the n-indices (J) of the bottom and top go in LBl
and LB2, while the f-index (I) goes in LB3. Slab sides are treated in
the same manner except that, since the points thereon may be input in
either direction, LBl and LB2 contain the indices of the end points of
the side in either order, i.e., LBl may exceed LB2. The points are input
from LBl to LB2.

For both slits and slab sides, a flag is placed in an array LTYPE
to designate the segment as a slit or slab side in horizontal or vertical
orientation:

+1 horizontal slit
+2 wvertiecal slit
~1 horizontal slab side

-2 vertical slab side
The code computes the number of points on the slit or slab side from the
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values of LBl and LB2 and places this value in the array LPT. All of these
arrays are single-dimension arrays, there being one set of parameters

for each slit or slab side. The total number of slits and slab sides,
including those on the outer boundary as described below, is specified

by the input parameter NBDY.

Quter boundary intrusions. As noted above, the outer boundary cam be

input in segments as slab sides. This is illustrated below.

¢

~>

©-

This is done just as described above for internal boundaries except that
values of -11 and -12, respectively, are input for LTYPE for horizontal
and vertical segments of the outer boundary.

Branch cut. With the other type of overall configuration, involwving
a branch cut, the outer boundary and the internal boundary connected to
the cut are both input clockwise from the points joined by the cut. As
noted above, these points are placed on the top and bottom of the rec-
tangle forming the outer boundary of the transformed region. This type
of configuration is elected through the input parameter NREN. Additional
internal boundaries can be input as either slits or slabs exactly as
described above.

Boundary input. Provision is made for reading the boundary points

either from card images (x and y for one point to a card in 2F10.0
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format) or from the output of the LINES code described below, as de-
termined by the input parameter ISLIT. The outer boundary must be input
as segments of slab sides if this boundary is included on the output of

‘the LINES code.

Contral Functions

Coordinate system control is includéd through both the attraction
of coordinate lines to other coordinate lines and/or points and to speci-
fied lines and/or points in the physical region, as described in Part A.
(For completeness, provision is made for repulsion as well as attraction.)

Attraction to coordinate lines and/or points. The first of these

requires the input of the index (indices) of the curvilinear coordinate
line, together with the associated attraction ampiitude and decay factor,
for each line (point) to which the attraction is made. For attraction

to lines, the index, amplitude, and decay factor are placed im the arrays
JLN, ALN, and DLN, respectively, while for attraction to points, the
corresponding arrays IPT, JPT, APT, and DPT are used.

Attraction to space lines and/or points. For attraction to specified

lines and/or points in space, the input is similar in regard to the ampli-
tude and decay factors, using the arrays APT énd DPT. It is necessary,

of course, to also input the cartesian coordinates of the points on the
line, or the isolated points, to which the attraction is made. These
coordinates are placed in the arrays XPT and YPT. For attraction to
points, it is also necessary to input the components of a vector normal

to the desired direction of the attraction for each point, these com-

ponents being placed in the arrays VECl and VEC2.
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Effect of boundary point distribution. In addition to the above types

of attraction, the control functions also include the effect of the
boundary point distribution discussed in Part A. This is done by evalu-
ating one of the control functions on each boundary segment in the
transformed region (P on n-lines, @ on E-lines) from the one-dimen-

sional relations in terms of arc length discussed in.Part A. These values
are placed in the arrays RXT and RETA, except for slits where the arrays
RXIL, etc., are used in the manner described above for XL, etc. Values

of the control functions in the field are then interpolated linearly
between facing boundary segments, P being interpolated vertically and

? horizontally,as illustrated inm the following diagram.

A A
0 : P
i '
..._l_.g:,
i
| ]
'p P
Y ,
X .
P .
e e e e P e - - >
Y v

This evaluation is done first and then the contributions to the control
functions from the line and point attraction is added to the arrays

RXTI and RETA in the field.

Tterative Solution

Initial guess. The initial guess for the values of the cartesian co-

ordinates in the field, i.e., the values in the arrays X and Y in the

field, that is used to start the iterative solution is obtained by the
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same type of interpolation between facing segments described above for

the control functions, except that both X and Y are interpolated between
the pair of facing segments with the smallest separation in the transformed
region. Thus values at point I in the figure below would be obtained

by horizontal interpolation, but at 2 the interpolation would be vertical.

Since very strong control functions can sometimes make the conver-
gence of the iterative solution difficult in complicated configurations,
provision is made for first converging the field with the control functions
set to zero and thenm re-converging in steps as these functions are
increased to full value. Actually this feature is rarely needed.

Acceleration parameters. As discussed in Part A the solution for the

cartesian coordinates in the field is done by SOR iteration. Either a
uniform value of the acceleration parameter can be input as R{l) or the

code will calculate a locally optimum wvalue at each point in the field,
these values being placed in the field array WACC. This calculation

is discussed in Ref. [8], where it is noted that the values obtained are

not truly optimum in all cases., Therefore this provision has not been

found to be as generally efficient as simply using a uniform value since the
calculation of the acceleration parameter involves a square root and

hence is time-consuming. The uniform value should be around 1.85 for
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large fields. This value should be decreased for strong control functions
or small fields.

Tterative process. The iteration continues until either the magni-

tude of the changes in the values of x and y at each point in the field
between iterations is less than the tolerances input as R(2) and R(3),
respectively, or until the maximum number of iterations allowed (input
as ITER) is reached. In the latter case the partially converged solu-
tion is stored on file 10 for restart. The input parameter IDISK can
cause the code to read this partially converged solution from file 10
and continue the iterations, This parameter also controls the dispo-
sition of the final solution, which is normally stored on file 11 for
use in the flow solution, but can be simply printed without being stored
if desired, Various other input parameters, such as print options, etc.,
are explained in the detailed input instructions given below and in

the source listing.

Code Operation

Initial input and setup. The WESCPR code uses the values of NDIM,

NDIM1, NDIM2, and NDIM3, which are assigned by a DATA statement, to deter-
mine if the problem specified by the input will fit in the arrays as
dimensioned. The first two of these parameters, NDIM and NDIMI, corre-=
spond to the dimensions of the field arrays, X, etc. The last two, NDIM2
and NDIM3, correspond to the dimensions of the slit arrays, XL, etc. The
last parameter, NDIM3, also corresponds to the dimension of the segment
arrays, LBl, etc. Thus NDIM is the maximum ﬁalue of £ that can be used,
while NDIMI is the maximum value n allﬁwed. Also, NDIM2 is the maximum

number of points that can be used on a slit or slab side, and NDIM3 isg
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the maximum number of slits and slab sides that can be used. The input
thus must satisfy the following:
IMAX < NDIM

JMAX < NDIML

A

|LB2(L) - LBL(L)| + 1 < NDIM2 L=1, 2, . . ., ,NBDY

NBDY < NDIM3

After the initial input parameters are read, the code does some
setup of various intermediate parameters and checks for compatability
with the array dimensions. The value of IDISK is then checked to de~
termine if the solution is to be started from the beginning or if a par-
tially converged solution is to be continued.

Boundary input and construction. If the start is from the beginning,

the point type array LSLIT is initialized to -20000on the outer rectangle
formed by I = 1 & IMAX and J = 1 § JMAX, and to O inside this rectangle.

Next the points on the slits and/or slab sides (if any) are read
from either card images or file 10. Points on slits are placed in the
slit arrays, XL, etc., while points on slab sides are placed directly
in the field arrays X and Y. The point type array LSLIT is set to
-(10000 + L) at points on slab sides, where L identifies the particular
segment in the order as input,unless the side is a part of the outer
boundary in which case LSLIT is left at -20000. At the same time, 10 is
added to the segment type array LTYPE for slab sides on the outer boun-
dary, resulting inreplacing the input values of -1l and -12 with -1 and
-2, respectively, in conformance with the usage for slits.

The slit arrays, XL, etc. (if any), are then printed and subroutine

BNDRY is called for the outer boundary. If the outer boundary is not
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input in segments as slab sides, this boundary is either input as a
succession of points proceeding from a specified point completely around
the outel rectangle formed by I = 1,IMAX, and J = 1,IMAX, or a circular
outer boundary is generated internally and placed on this rectangle.
Both of these procedures are performed by this subroutine by calling the
subroutine INFBDY, which either reads a point from a card image or cal-

culates a point on the circle.

Point types. WNext the point type array LSLIT is set to the following

values on and adjacent to slits (if any). Here L identifies the partic-

ular slit in the order as imput:

-L : on slit

10L +1 : below horizontal slit

10L + 2 :; above horizontal slit not adjacent to
10L + 3 : 1left of vertical slit slit ends
10 + 4 : right of vertical slit

The point type array LSLIT is then set to -10000 for points outside
the computational region, i.e., inside slabs, by sweeping along each ¢-
and n-line and noting when the computational region is entered or left
across a slab side. The complete point type array then contains the

values indicated in the following diagram:
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e 10L + 4 10L + 2
o -1,
. -
[ ]
10L + 3 10L % 1
T_L -20000 ’

-(10000 + L)
-—

#-10000
o0

« ~10000
$-20000

Control functions and initial guess. With all of the boundary points

in place and the point type array filled, the code then calls subroutine
CONTRL to evaluate the control functions on the entire boundary (including
internal boundaries). The subroutine GUESSA is called next to calculate
the control functions and the initial guess for the cartesian coordinates
in the field by interpolation from the values on the boundaries. This

interpolation is done at each point in the field by locating the pair of

63



boundary segments facing the point (one or both members may be internal
boundaries) and interpolating between these segments. For the coordinate
values, the distances separating the pair of segments facing the point

in the horizontal and vertical directions are examined and the interpo-
lation is done between the pair with the smaller separation.

Iterative solution. If the solution is to be restarted from a partially

converged result, then all of the above computations are skipped and the
partially converged solution is read from file 10 instead. In either
case the dnitial array values are printed at this point according to

the input print comntrols.

Subroutine TRANS is now called to perform the iterative solution.
This subroutine first reads the parameters associated with the attraction
of curvilinear coordinate lines to other curvilinear coordinate lines and/
or points. The species of line being controlled, i.e., £ or n, is read
into ATYP, and whether the control is to be attraction or repulsion is
determined by the input parameter ITYP. The number of coordinate lines
and points designated as sources of attraction are read into NLN and NPT,
respectively. Also, a common decay factor and a common amplitude multi-
plication factor to be used for all attraction lines and points for this
species can be read into DEC and AMPFAC, respectively.

For each species of control, subroutine RHS is called to read the
attraction line index, or point indices, and the amplitude and decay
factor for each. This subroutine also sums the effects for all such
attraction lines and points and adds this cumulative effect to the
control function at each point in the field in accordance with Eq. (5)

of Part A.
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Subroutine TRANS then reads the parameters associated with attraction
of curvilinear coordinate lines to specified lines and/or points in space
and adds the cumulative effect of all such attraction lines and/or points
to the control functions at each point in the field. This is done in a
similar manner as described above. Subroutine RHSXY reads the cartesian
coordinates of the pointson the specified attraction line and those of
the isclated attractfon points and calculates the normal to the attrac-
tion line. These qualities are placed in the arrays XPT, YPT, VECl, and
VEC2Z. The addition to the control functions in this case must be changed
as the iterative solution of x and y proceeds since the control functidns
‘depend on x and y for this type of attraction.

After completing the calculation of the contrel functions, sub-
routine TRANS reads the parameters that provide for a gradual implemen-—
tation of these equations during the iteration, and performs some setup
for the iterative solution.

The field is then swept iteratively until convergence is achieved
or the maximum number of iterations allowed is reached. In each itera-
tion, new values for x and y at points having the point type LSLIT non-
negative are calculated.

First, the coordinate derivatives are calculated, and the Jacobian
and other such quanﬁities and coefficients are evaluated. Then the
locally optimum acceleration parameters are calculated if such is elected.
The change in these acceleration parameters between iterations is moni-
tored and the values are frozen when the magnitude of the change falls
below a specified tolerance at all points. (This change between itera-
tions, and the analogous changes in x and y, are calculated by calling
subroutine ERR@R.) The acceleration parameter is placed in the field
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array WACC, The addition to the control functions from attraction to
specified lines and/or points in the physical region is calculated next,
énd then the new values of x and y for the point are calculated,

This procedure is followed for all points in the field, i.e., points
having the point type LSLIT non-negative. For points adjacent to slits
it is necessary to obtain the values on the slit from the slit arrays,
XL, etc., and the calculations are done in that case by calling sub~
routine SLIT.

After each sweep of the field the maximum changes in x and y from
the previous sweep are compared with the input tolerances. If the max-
imum number of iterations allowed by the input is reached before conver-
gence, then the partially converged solution is written on file 10 for
potential restart. If comvergence is obtained, the solution is written

on file 11.

LINES (Boundary Segments)

The small front-end code LINES generates a distribution of a speci~
fied number of points on a curve between two specified points. The curve
may be specified to be a straight line, a circular or elliptic arc, a
quadratic with zero slope at either end point, or a cubic with the slope
specified at both ends. In any case the point distribution on the curve
may be uniform or exponentially concentrated toward either end. The
input consists of the number of curves to be generated and, for each
curve, the number of points on the curve, the type of curve, the end
points, and the particular quantities to be specified in connection with

each curve. Detailed instructions for input are given below.
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The cartesian coordinates of the points generated on each curve
are output in succession on file 10 by a separate unformatted write
statement for each point (WRITE(10) X,Y). Since more than one curve
can be generated in one run, this code can be used to build an entire
boundary composed of segments of different types. The generation of the
curves and the exponential concentration of points thereon are explained

in the following section.

Generation of Curves

Straight line. Here we have simply

vy =a+ bx

so that with the end points (xl, yl) and (xz, yz) specified we have

1 xl (a ) Y1
1 X, b{ Yo

so that

Qo 12 7%
X2 - Xl
Y, = ¥
b2 Xl
A

Circular are. For a circular arc of radius r centered at (x

0° YO)

with 6 measured counter-clockwise from the positive x-axis, we have
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™
1

X, + r cos @

o
]

Yo + r sin ©

The end points are defined by inputting the radius r and center of

the arc (xo, yo), together with the angles 61 and 6, of the end points.

Elliptic arc. 1In this case we have, for an ellipse with semi-major

axis, a, and semi-minor axis, b, centered at Xg> Yg» the equation

(x - x0)2 (y - YO)2
a? * b2 =1

which can be written in terms of the angle 6, measured counter-clockwise

from the positive x-axis, and the angular-dependent radius r(6) as

X = x4 + r(8) cos 8
Yy =94+ r(B)-sin 0
Then
9 .2 -%
r(e) = cos” 8 4 Ein 8

al b2
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The end points are specified by inputting the axés a and b, the center

(xo, yo), and the angles of the end points.

(xo,yo)

Quadratic with zero slope at end point. Here we have

a 4+ bx + cx?

b
]

v'=b + Z¢x

Then with the end points (xl, yl) and (xz, y2) specified together

with the specification of zero slope at end point i (i =1 or 2) we have

2
1 Xy X a ¥y
2 =
1 X, X, b Yo
0 1 2x c 0

which is solved for the coefficients a, b, c.

Cubic. The cubic equation is

y =a + bx + cx? + dx?

y* = b + 2ex + 3dx?

or
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1
1 X, x22 x23 b Yy
0 1 2x1 3x12 c ) yl‘
0 1 2x2 3x22 d yz‘

which is solved for the coefficients a, b, ¢, 4d.

Exponential Concentratior of Points

The exponential distribution of points on the curve of any type is

done by taking

1 - e—u(N—n)
1 - e—m(N—l)

x =x 4+ (x
n

1 1-

9 = %)

for concentration near the first end point and

1 - enu(n—l)
1 - e—a(N—l)

T E t Oy X))

for concentration near the second end point. Here the strength of the
concentration is controlled by the specified decay factor a, and N is

the number of points on the curve.
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CSPLAT (Plot)

The plot code CSPLAT plots the coordinate system generated by the
code WESCPR, having read the coordinate system from file 1] as output
by WESCPR. The input consists of the number of coordinate lines to be
plotted, a designation for skipping lines, the extent of the field to be
plotted, and a factor for using different seating in the horizontal
and vertical directions. This input is detailed in the following pages.

The plot is formed by simply connecting the points on a line of
constant curvilinear coordinates in the physical region, i.e., by con-
structing straight lines between each successive pair of points, X(I,J)

and Y(I,J), as one index is held fixed.

71



WESCPR INPUT INSTRUCTIONS

RIEIREesetieacttientitbititebetnattidaitiiitiiiottistbestititttitis titt it
. gj%xtxxtxxttz:t:txxxt:xxx:tx WESCOR BRIt i n e LR Rk
{%g;gt!ttXX!!K!t!Xt!X!!XI!!It!**Kt!ltt!!lK*txtttill!!1!Illtllliltlllilltllit
160=C  2-D BOUNBARY-FITTED COORDINATE SYSTEW CODE
180=C  HISSISSIFPT STATE UNIVERSITY . 1982

200=C  U.S. ARMY ENGINEER WATERWAYS EXPERIHERT STATION
20=[  VICKSBURG: MISSISSIFFI

=L
2305%**1***!&!1t*i!!tll!!tttltt*t!!i*l*t!ltX!X!!Xlttt!l!!ttitll*tt!¥¥¥l!¥*t!

230= ittltl!lt*ttl SLIT-SLAK CANFIGURATION ¥xxxx

270=C litt ATTRACTION TP COOKDIHATE LINES/POINTS AND TO SPACE LINES/POINTS,
280=C XR** CONTROL FUNCTIONS ALGO INTERPOLATER FAON BOUNDARY POINT DISTRIBUTIGM.

300=C ttt*tl!‘!!l!!lltttlttttitt!#!KI!XX!!!K!XXtXX!l!!**X!lt!!ttlxtttt#ltt
3H0= HREXKpOoxs THPUT INGTRUCTIONS 3

320-C z
g}gf :Xt CARDS(2Y © LABEL - FORMATU10A8)
%%gfc : LABEL - TWO B0 CHARACTER CARDS. {BLAMX CARLS IF NO LABEL)
370=C  $%% CARL §  TMAX»JMAXsNRDYs ETERsISLIT, TBHDRYy IDISK, INIRs TRINTL,
gggfg : INFINsNREN - FORMATC11IN)
i?gfg i INAY - NWUMBER OF XI POINTS. .
:%83% : JMAY - NUMBER OF ETA POINTS,
zggfg i HBIY - TOTAL MUMBER OF SLAB SIDES AMD SLITS IN THE FIELD.
&?g=8 : ITER - HANINUN NUMBER OF ITERATIONS ALLOWED.
479
480=C { ISLIT - =i SLRB BINES DR SL1T5 REAIF FRON CARDS.
=t ¥r¥ - FORMAT(2F10.0) s+ ONE POINT PER CARD.
S00=C ¥~ =2 SLAB SIDES OR SLITS READ FROM FILE 10,
%%gfg § YsY - UNFORMATTED » ONE FUINT PER INAGE,
530=C 1 (NGTE! HORIZONTAL SLITS ARE REAT CLOCKWISE FROM RICHT END.)
o=t 1 { VERTICAL SLITS ARE COUNTER-CLOCKWISE FROM TOP, )
EEOfE : { SLAE SITES WAY BE READ I EITHER DIRECTION.
a70=L 1 IBMIRY - =0 QUTER BOUNDARY CALCULATED INTERNALLY AS CIRCLE.
5B0=C ¥ =] DﬂTEN BDUHBAR? READ FROM CARDS.
oH=C & FORMATC2F10.0) » BHE PDINT PER CARD.
a00=C & =2 OUTER BGUNﬁARY READ Filn T
alb={, & %rY - UNFORMATTER ¢ OHE PUINT "BER - IHAGE
i§8=g i =-1 QUTER BOUNDARY READ IN SEGHENTS AS SLAE SILES,
M0=C {NGTE: FOR TEMDRY = 1 OR 2 + UUTER BOUNEARY 15 READ CLOCKHISE)
ool=l ¥ ( FROH POINT ¢ INFXTsINFE
sa0=( § { *JUTER BOUNDARY" HEARS EHTERE BOUNDARY OF TRANSFORMED )
00 & ! REGION TF NREN=0, IF MREN IS NOT 7ERO» THEW DUTER
oB0=C & { BOUNDARY IS THE TOF OF THE TRANSFORMED REGION AND )
33355 ; { INNER BOMNDARY 1S THE BOTTOM. }
6= ¥ IDISK - =0 BON'T READ OR WRITE SYSTEW FROM OR DM FILE
TH=C =] WRITE SYSTEM ON FILES 10 & 11, TON'T READ CYSTEN FROM FILE,
7H=C 1 =2 WRITE SVSTEM ON FILES 10 & 11 , READ SYSTEM FROM FILE 10 FOR RESTART.
;%g= : =3 KEAD SYSTEN FRON FILE 10 FOR RESTART. BON'T WRITE GYSTEM DN FILE 11.
7800 % (HOTES FILE 10 1S RESTART FILE FOR CONTNUATION OF ITERATIDH.
Z§g=g ; { FILE 11 IS STORAGE FILE FOR FIMAL SYSTEM.
790 £ IRIR - =0 DOW'T PRINT CACH JTERATION ERROR.
g?gfc : =1 FRINT EACH ITERATION ERROR.
g20=C 1 TWINTE - =0 DOW'T PRINT IRITIAL GUESS,
%38=g : =1 PRINT INITIM. GUESS.
=
an0=C 1 TWFIN - MON-ZERD SUPPRESSES PRINT OF FINAL VALUES.
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Y

NREN - WON-ZERQ USES RE-ENTRAN: ROUNDARY Od LEFT & RIGHT SILES
OF TRANSFORNED REGIGM: WiTh OUTER BOUNDARY 0N TOF
AL THEER BOUNDARY On BOTTON,
IANER EOUNDARY 15 RZAL AS FOLLOWS BEFORE READING OUTER BOUNDARY:
=1 TWNER BOUNDARY REAL FROM CARLS,
%Y - FORMATC2F10.9) o OME POINT PER CARD.
=2 IKNER BOUNDARY KEAR FRON FILE 10,
XY - UNFORNATTED » ONE IMAGE FER CARD,
(HOTEY GBLITS AND/OR SLABS MAY ALSD BE PRESENT.)
FX (ARDGCNEDY) L31sLB2sLES,LTYPE - FIORMATL4IS)

LRI:LEZ - FIRST oD LAST INDICES OF SiAB SiDE OR SLIT ENDS,
(LBZ MAY BE LESS ToAM LE1 FOR SiAB S5IDE. INPUT IS FROM LBL T0 LE2.)

L3 - INIEX OF LINE O WKICH SLAB SIDE OR 5.IT I5 LOCATEN.

LYYPE - GLAR SIIE OR 51T TYPE {1 FiR HORIZONTALs 7 FOR VERTICAL.)
(MEGATIVE INDICATES S1AB SIIEs RATAER THAN SLIT.)
{SUBTRACT 10 FOR DUTER BOUNDARY SEGHINT, )

(I,Evy -11 15 HIRIZONTAL QUTER BOUNTARY SEGNENT,)
{ =12 I5 VERTICAL OUTER BOUNDAKY SEGMENT. )

3 CARD Rl 3-ROZ39RET 1 YINE TN ATNF TN XGINF s YOINF » INF AT+ INFETA
- FURMAT{7FL0.04215)

Ri§} - SOR ACCELERATION PARAMETER,
(ZERD VALUE CAUSES YARIABLE ACCELERATION PAKAMETER)
(FIELD TO BE CALCULATED INTERMALLY. )
R(2) - ALLOWARLE X ITERATION ERKGR.
R(3) - ALLOWABLE ¥ IVERATION ERROR,
YINFIN - RATIUS OF CIRCULAR OUTER BOUNDARY,

AINFIN - AKGLE OF FIRST POINT ON CIRCULAR DUTER BOUNRARY {DEGREES),
(COUNTER-CLOCK FROM FRSITIVE X-4XIS.)

XOINF2YOINF - CENTER OF CIRCULAR OUTER BOUKBARY.
NINF - NUMBER OF UNIGUE PEINTS On CIRCULAR GUTER EOUMDARY.
TaFXI2INFETA - INBICES OF FIRST POINT On CIRCULAR DUTER BOUNDARY.
(NDTE 3 LAST 7 OF TnESE fARAHETERE ARE IRRELEVANT IF OUTER EGUNBARY IS KEALL)

A ek e M ek S o

"“““““"**"““ﬂﬂ*ﬂ*“”ﬂ““”“ﬂ*“ﬁ“"ﬂﬂ“ﬂ““ﬂ—*ﬂ**

*lQi'v.lIllluoliéoocaoonil||l0||0'000000|t!0o||+nl|oo-nob0-¢'00lll

£ I FOBIEE ANDAGR GUTER BOUNDARY ARE REAN FXON CARISs SuCH CARDS
:8 FOLLDW NEXT )
3

$¥ S.ITS ANDYOR SiAE GINES ARE REAL FIRSTs THEN QLTER BOUMEARY IS REAL,

¥

! :x CTHESE RULES APFLY FOR REAEING FROM FILE 10 AS WELL AS FROM CARIS.)

xiu»nu'ovioin-ulrool-infrc't'ltotooooon|o||'|to|ﬁl'0roooltllﬁolt

X IF kG COORDINATE ATTRACTIZN IS 70 BE USEDs FOLLOW THESE CARLS

. XX WITH EIVE hiata CARBS, IF ATTRACTION IS TG BE USELw USE THE FOLLOGMWING
X :: INPUT RATHER THAK The BLANK CARESS

L IPUT FOR COORDINATE SYSTEM CONTKIL 3 USE FOUR SFTS: GHE FOR

B X1-LING BTTRACTICN T0 COARRINATE LINFS/POINTS; ONE FOR ETA-LINE ATTRACTION
5 T COORTNATE LINES/POIATS, OWE £OR XI-LTND ATTRACTIGN TO SPACE LINES/FOINTS,
Xz AND ONE FOR ETA-LINE ATTRACTIDN TG SPACE LINES/POINTS.

§: ANY SET NOT WAHTED IS REFLACED BV ONE BLAMN CARE.
ii##i#&#i#i#1###1#####41#*##1##1&####%#######4%i#*ii##i####4#####1

;: THE FOLLONINE: WARKED WITH 4+ I3 FOR ATTRACTION T6 GOORDINATE LINES/FDINTS!
::*! CaRT & ATYRSITYR s N MaNE T2 IECOAMPFAT - FORMAT( A8 129215:2F10,0

£1 ATYF - TIFE OF ATTRACTION, (X1 FOR XT-LINE ASTRACTIOM:
:: ETA FOR LTa-LINC ATTRACTION, ) LEFT JUSTIFIED,
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1ab0=C 3t ITYP - ZERG GIVES ATTRACTION OH BJTh SILES.

1670=C 34 HON-ZERD GIVES ATTRACTION ON GEPER SIIE AND

oL 38 REPULSION G LOWER SILE.

i;?g§c H MK - HUNBER OF ATTRACTION LIKES.

{rae=C NPT - NUNBER OF ATTRACTION POINTS.

'f =

irot & DEC - NON-ZERO DEC USE3 TEC FOR DECAY FACTOR.

%;$SZE s ANPFAC - NON-ZERD AMPFAC NULTIPLIES ALL AWPLITULES BY AHFFAC.
2 HIZGC 38 CRISINN § JLRAUTLR = FORMTISKIISH2F10.0)

1790=¢ OMIT If NN IS ZERD)

1000 ¥

ig10=C & JLN - ATTRACTION LINE INDEX.

ig30eC o ALN - SHPLITULE (NEGATIVE REPELS) FOR LINE ATTRACTION.

1950=C 13 DLK - ECAY FACTOR FOR LINE ATTRACTIDN.

18600 4

1870=C S48 CARTSINFT) b IFT,JFT)AFTsTPT - FORNAT 21502F10.0)

[ (OKIT IF WPT 15 ZERD)

1690=C 4

1900=C 34 IPTsJFT ~ ATTRACTION PEINT TWDICES.

§3§8;5 # AFT - ASFLITUDE (NEGATIVE REPELS) FOR POINT ATTRACTION,

§3§8§E H TFT - TECAY FACTOR FOR POINT ATTRACTION.

igggig B SHRASHAAASSASS A SRAIREAA R RAA3S

1
1980=C %% THE FOLLOWINGy MARKEL WITH $» IS FOR ATTRACTION TD SPACE LINES/POINTS !

19%0=C 1%

2000=C  ¥$%x THE FOLLOWING CARDS ARE FOR ATTRACTION TD LIMES AND/OR PUGINTS
2010=C  ¥$x% DEFINED BV Xs¥ COORDINATES, IF NLM IS NCT ZERD: THEM ML
2020=C s3xx OF THE CARBS GIVING NP MUST APPEAR. EACH OF THESE CARDS IS
2030=C »¢¥x FOLLOWED BY NP OF THE CARDS GIVING XPTs ETC, IF NPT IS WOT
2040=C &4x3 ZEROs THEN NPT OF THE EARBS GIUIHG ¥FTy ETC. WUST FOLLODW
2050=C $s¥y THE LAST GROUP OF THESE CARD

2040=C lit# ANY SET NOT WANTED IS REPLACEB BY OKE BLANK CARD.

% 2080=C ::XX CARD ¢ ATYPSTTYPsNLMaHPT+TECSAMPFAC ~ FORMAT(AB,IZr215:2F10.0)

3100=L 15 ATYP - TYPE OF ATTRACTION, (XI FOR XI-LIRE ATTRACTION
555335 :3 ETA FOR ETA-LINE ATTRACTION.) LEFT JUSTIFIER.
N30=E 18 NP - ZERD_ GIVES ATTRACTICN ON BOTH SIDES,
S140=C 18 NON-ZERG GIVES ATIRACTION ON UFPER SIDE AND
250=L 1§ REPULSICH ON LONER SIDE.
280=C 1% ,
NI=L ¥ MN - NUMBER OF ATTRACTION LINES,
3180=C 35
N0l 13 NPT - HUMBER OF ATTRACTION POINTS
ggggfc :2 {NOT INCLUEING POINTS OM ATTRACTION LINES)
§§§8= :: DEC - NON-ZERO DEC USES DEC FOR DECAY FACTOR.
§g§825 :g ANPFAC - NON-ZERD AWPFAC MULTIFLIES ALL AMPLITUDES BY AHPFAC,
i+ 29800 5K CARD § NP - FORMAT(IS)
2700 ¥ _
3%3855 :: NP - NUNEER OF POINTS ON THIS ATTRACTION LINE.
o §§ggfg ::tx CARDS § XPT:YFT+APT,IPT:VECI,VEC? - FORWAT(4F10.0)
=L 1 XPTIYPT - COORDINATES DF ATTRACTION POINT DX
5330=C 15 FOINT O ATTRACTION LIHE,
J40=C 18 .
ggggfg :: AFT - ATTRACTION AMPLITUDE {MECATIVE REFELS).
W06 18 DPT - TECAY FACTOR.
R0=L 13
2390=C 13 VECIVECZ - X, CONFONENTS OF UMIT VECTOR NORMAL T0
M00=C 5 ATTRACTION DIRECTIGN FOR POINT ATTRACTION.
%1§3=c :: {CALCULATED INTERNALLY FOR LINE ATTRACTION,)
%30 ¢
:440=|: *"DOI.i..lll.'..'!'..b.'ll'lIC.l'}('f"...'."ll"'f“ll"'..."'.'
U50=C
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:*# THE LAST COORDINATE SYSTEM CONTROL CARD IS THE FOLLDWING CARE §
g*l CARD 3 TFACYIRIT(EFAC - FORHAT(215:F10.0)

(CAN BE USED TO ATD CONVERGENCE BY CONVERGING FIELD )
(WITH LESS ATTRACTIDN FIRST AMD USIAG THIS RESULT )]
(AS THE INITIAL GUESS FOR SIRONGER ATTRACTION. )
(BLANK CARD MUST BE INPUT IF THIS FEATURE IS NOT USED. )
{STAMDARD IS 70 MOV USE THIS FEATURE » BUT ITS USE NAY)
{BE MECESSARY WITH STRONG ATTRACTION, )

IFAC - NUMBER OF STEPS IN ADDITION OF INHOMOGENEQUS TERM.
DOUBLES INHONOGEMEQUS TERM AT EACR STEF,

1

|

I

%

1

i

]

i

i

1 (IERD CONVERGES WITH FULL ATTRACTION,
4 (1'0 CONVERGES WITH RO ATTRACTION FIRST) THEM

i {WITH FULL ATTRACTION, 2.0 COMVERGES NITH NO

i (ATTRACTION FIRGTy THEN WITH HALFy THEN WITH FUbiL.)
: CINCREASE NUMBER OF STEFS IF DIVERGENCE OECURS, 3
E
X
Ed
|

IRIT - HOM-ZERD VALUE CAUSES INHOWOGEMEOUS TERM TO BE PRINTED.
EFAC - NULTIFLE OF CONVERCEMCE CRITERION YO BE USEL FOR
INTERMEDIATE CONVERGENEE BETWEEN ALDITIANS OF
THHOMOGENEDUS TERM. { TYPICALLY 10.0 )
ARt E bt ettt iRt Ph et e sdnabissiteattabidiiosesbstdadbsstniooned
HASS STORAGE FILES ¢
RESTART FILE - FILE 10
(10} RXI/RETA
{103 Xy YrLSLIT+LAREL » THAX 2 JHAY
(10) MBDYsNUNEyLELsLB2sLB2sL TYPEsLPToXLs XU YLy YUs
NDTiy NDIML yNDIN2 s NDINS WACC
COBRTINATE SYSTEM STDRAGE FILE - FILE 1t 3
LABEL » THAXy JHAX

{11}

{11) (CLSLITCRad )aI=1 s INAK Y5 d=1 080D
(14) (W Irikl= lsIHAX)!J-liJﬁﬂX)
i

Bt e

(Yo d 2 1=17 INAX 22d=1 s KA
NBBYrﬂUHB:LBI)LBE:LB3!LTYPE!LFT:XL!XU!YLlYU!
NITMyMDTH1 sNDIN2,NDIH3

REitititnitiiatitdidtetebitiattitieetiitsieetitidtitissitiitsttie]

75




LINES INPUT INSTRUCTIONS

i00=Cl!!ttttlxlllllttil!l!llll!tllllX!Xt!!a*tl!ltl!t!ttlt!!!!!llx!!ltt¥!¥!¥t
EEO;E#X!*tit!xt*ttX!Xl!!lll!t NN tditctteibitiotiititectiseitietiis
i:ﬂ%Ctllllt!l!Xt*!!t!ltl!!litt!*llﬂ*8!$!¥!t¥¥ttx!!lK!*XXX!!!KK!!K!lit!lthtt
igg;t BOURDARY SECHCMT CODE FOR INPUT TO WESCOR

130=C KISSISSIPPL STATE UMIVERSITY . 1982

200=C UG, ARMY ENCINEER WATERWAYS EXPERTHENT STATION
210=C  VICKSBURG: NISSISSIFFI

’30'%(!!tYtl!ttttxtilllllltttz!l!t!t!t!*t!tltt***ltlli!!t!leXl*ttttXt!t*!
’nggtttt PGINTS OM BOUNDARY SEGHENTS Xixx

TR i etititeireetieiaitrioittetiiittititstistettastactitisstiatis
:gg~C¥ltl Infut 3

\gg Cl!ChRH P HLINES - FORMATUIZ)

J30“. HLINES - TGTAL MUMEER OF LINES.

§§§:E¥*CARDS(NLINES) Y M ITYPy DL o D25 D3, BAs TS, D6sTE - FURMAT(RIS:7F1040)
‘?0‘% ¥ - MIHBER OF POINTS OR LINE.

380= il
390=C ITYF - TYPE OF LINE

400=C O + STRATEHT.

410=C 1 1 CIRCULAR ARE.

4a0=( 2} ELLIFTIC ARE.

430= 3 3 CUBIE.

440= 4 & DUADRATIC WITH ZERD SLOPE AT FIRST POINT.

t23=c 5 | BUATRATIC WITH ZERD SLOFE AT SECOMD PDINT.

4= .

ﬁégf U1-D6 45 FOLLONS - {ITENS NOT CITER ARE IRRELEVANT)

#j0=C  TTYP=0 § Dl - X OF FIRGT FOINT.

500=(, B2 - ¥ OF FIRST POINT.

510=( 03 - X OF SECOMD POINT.

§§ofE I - X iF SECOND POINT.

§40=E ITYP={ ¢ @it - AWELE OF FIRST POInT (DEGREES» EOUNTER-CLOCK FROM POSITIVE X-4X1S)
530=C 2 - ANGLE OF SECOND PUINI (IECREESs COUNTER-CLOCK FROM POSITIVE X-AXIS)
S60=C B3 - X OF CIRCLE CENTER

ET0=E 14 - ¥ OF CIRCLE CENTER.

Eggfc 15 - CIRCLE RADIUS.

§60=' ITYP=2 § Tl - AMGLE DF FIRST FOINT. (DEGREESs COUNTER-CLOCK FROM POSTTIVE X-AXIS)
810=C 112 - AMELE DF SECOND PDINT. (DEGREES: COUNTER-CLOCK FROM PDSITIVE X-AXIS)
0= I3 ~ X DF E.LIPSE CENTER.

630=C I4 - ¥ OF ELLIPSE CENTER,

840=C I - ¥-#XIS LENGTH OF ELLIPSE.

&28=E ’ Ig - Y-AXIS LENGTH OF ELLIPSE.

u el

&70=C  ITYP=3 | T-D4 SAME &5 ITYP=0

S80=T I5 - SLOPE 47 FIRST POINT. (DEGREESs ‘COUNTER-CLOCK FROM POSITIVE X-AXIS)
gggfg Dé - GLOPE AT SECOND POINT, (DEGREES: COUNTER-CLOCK FROM POSITIVE X-AXIS5)
;égng ITYP=4 } Di-I4 SAHE &5 FTYF=0

;igft ITYP=G § Di-D4 SAME A5 ITYF=0

?50=L It - EYPONENTIQL CONCENTRATION FACTUR.

FA0=C 0.0 FOR EQUAL SPACING ON LIN

770=C HFGhTIVE FBR COMCENTRATION Nfﬁk FIRST FOINT,

780=C - POSITIVE FOR CONCENTRATION NEAR SECOND FOINT,

790=C
808 S EEER it et bbbt tedtiitdasntttitbiiiititiitettenttitiitiitill
B”O“C HAGS STORAGE FILE :

340-C OUTPUT - FILE 1D 3 “ﬁITE(IO) XYY
§30=C X & Y POINTS OF EACH LINE, THCLUIING ENDS.
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CSPLOHT INPUT INSTRUCTICNS

i?gzggi!*¥X¥!Xt¥¥tl!lt*l!ltlllll!!tlt‘lﬁl‘!llttittltl!33!1!1!353¥!X¥lt¥lt¥ll
i%8:%:¥tlt*¥!ll!¥!X!!tl!ltlt IR MR ttittititittetitiiteteivetitteifst]
i40:0ltllttt!t!ttt!!!tlttttltll!!!31!!!*‘!*!!!!81!!*!l!!llt!lltxttillttttttt
i?g:g COORDINATE SYSTEM PLOT CODE - WISRISSIPPL STATE UNIVERSITY . 1982

180= U5, ARHY ENGINEER MWATEAWAYS EXPERINENT STATION
190= VICKSBURGy MISSISSIFPI

AN

200=Cx
%%8=g¥!tKt¥¥lltt*!llt!l!!l!l!!llttl!¥!¥¥18!Xl!!llxltlllttittllttl!t!!l!!!ltt
%ig%g :tl*illt!ttll!ltl!tt!!!l!l!l!!tt!ttttltlttttlliltxtllttttllttttlilltt
200=0 kxgxax IWPUT INSTRUCTIONS !

3 '
270=L i*l CARD & MUMBR r NUMBRLY» ISKIP1 4 ISKIF2 - FORMAT(4IS) -

ISKIF2 - GKIP PARAHETER FOR ETA=CONGTANY COORGIMATE LINES,
(SEE ISKIPL)

~80=C

200 1 HUMBR - NUMBER OF ETA=COMSTANT LINES BESIREDL FOR PLOT.

i?gfg : {DEFALLT IS ALL LIMES)

320=C ¢ NUNBR1 ~ NUMBER OF XI=COMSTART LIHES DESIRED FOR PLOT,

g}gfc : {DEFAULT IS ALL LINES)

a50=L 1 I8KIPY - SKIF PARANETER FOR XI=CONSTANT CODRIINATE LINES,
o80=C ¢ (1 PLOTS EVERY LINEy 2 PLOTS EVERY SECOND LINEs EIC.}
70=L 1 CDEFAULT 15 EVERY LINE)

380=C 1t

3 i

410=C ¥
4%3=E :tx CARD 3 IB1 » IB2 5 JB1 5 JE2 - FORNATI4IS)
#30=
H#o=C 1 1»d INBICES OF FLOT FIiELD BOUNDARY.
:28:% : (115 XIy J IS ETR. DEFAULT IS ENTIRE FIELD)
470=C ;tt CARD § XYRAT - FORNAT(T10.0)
b4

; XYRAT - RATID OF PLOTTED X TO Y LENGTHS, (1.7
510=C itl!t!ltl!ttt!!lllttttllt!llt!t!xxttl!!!!!l!!tl*ltl!t!tltiltt*t!itl

©30=C xpexx COORDINATE SYSTEM IS READ UNFORMATTED FROM UNIT 10 AS
oAQ=C :Xt!!l WRITTEN BY THE EODE ‘WESCOR'

A=
GLIC R R atisttdetistitiitiatiititioteatotanioeinnidbioaritiiiesitdbtefitil]
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SAMPLE RUNSTREAMS

LINES Sample Runstream #1

120=40B,

130=ACRUIRE yDA=BINARY s PDN=THONPSONL INESE s 1D=INGMNIN » I =TR LT,
140=LIR DN=RINARY ,

150=D15POSE yBN=F T 10, SIi=F ILE » 1= 1 D=5 1y DE <TRo TEXT=1
160= * CATALOGsF ILEy THOMPSONL INESD, TN~  RF=977, ',
ié 8-EELETE rEN=BINARY

190=TELETE » IN=RINARY,
00=4E 0K

2= 5

20= 3 0040 0:0 24,39 0,0
230= 0 0.0 0.3 ¢l 03
d= N 0464 =03 24,39 -0,91
0= % 00,0 “0,3 +0 9.0
0= % 23y -0 24,39 0.0
70=XE0R

200=XEQF

WESCOR Sample Runstream #1

120=0{ByT=404
130=-ACBUTRE s BN=F 710+ PIN=THONPSONL INESD s 1= IS : I = TH, LG,
140=ACRUIRE y DN=RINARY  PUN=THUNPSORCORDE s 0 -0NNSREN: IF=TR, U,
150=LER DN=BINARY
;oO”EIISFDSE:lJN‘FTl!1SIIN-FILE|IIL~:DE 579 DF=TR) TEXT=1
170= ! CATALOG,FILE, THONPSONCORED » 10~ 0lemime s RF=799.
1B0=DELETE sDN=FT10,
190=DELETE s DR=HINARY.
200=EXIT,

210=DELETE ) DN T10,
Z20=DELETE » DR=BINARY.
230=3E0R

240=JOHNSON FLUNE

250 £x! X 23 EDURDI%ATE ngTEH

33 20 -
1 -it
1 -il
K X 1 -i2
al0= 3

i3 -i?

320=L.8 00001 9,00001
330=

=

350=

360=

3=

JH0=AEQR

JR0=0F

L]
=
It
[ P c.
ol
Ll

CSPLYT Sample Runstream

120=J0B,

130=ACOVIRE s IN=FT 10 FIN=THORFSONCORTO, 11~ NEaE0 I =TF 1 i,

149=ACOUIRE rBN=BINARY rPIN=THOKPSONCSFLOTE, TT-O0BNSNNS  [F =TR: U0,

15¢=LIRsLIB=HETAL IR [H=BINARY ,

150-B18FDSE:[IH—FTOI:SDH—F!LE;ID‘“;M—ST:BF-SB:TEXT f
170= ' CATALOG rFILE  THOMFSONPLOT » TD-SNENSNES: F=977

lBO—BELETErBN-FTIO

190‘D§LETE:BN—-BINARY.

00=EXIT

210=DELETE »TIH=FT10,
220=TELETE s TH=RINARY
230=%¥E0k

0= 0 0 1 1
250= 0 0 0 0
w80=2,0

270=4EDR

JBO=%EOF
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LINES Sample Runstream #2

120=J0B,

$30=ACOUIRE » DN=RINARY s PIN= 7HOHFSUHLINESE~rID--rllF—-TRrUD.
$40=LBRsIR=BINARY,

150=515POSE y IN=F T10s SUN=F ILE , 1= 00NNy M-ST;BF'H\!TEXT t
160= CATI\LUGvFLLE:ThBﬁF‘SUHLIHESBlsIB“:RF =490
170=DELETE sTN=BINARY ,

180=EX1T,

190-DEE§TE;DH“BINARY.

08

No= 15

2= 25 0150 0.0 5,91 0.0 9.0 0.0 ~0.08
230= g 0 5.1 0.0 L) G608 240 2.0 0,2
24Q= 3 0 1'1 048 3.9 0,48 8.0 0.0 0.0
J50= 9 g 3.5 0.48 2,29 0.0 Ry 040 -{,2
260= 02k 0.0 8.0 0.0 0.0 0.0 0.0
0= 22 000 0.0 0.0 1.03 8.0 0.0 4.0
2g0= 24 0 0.0 1.83 3.0 1.6 0.0 0.0 8.0
0= 29 9 5.9 1.63 15.0 1.43 00 0.0 004
$00= 7 0150 1,43 15.0 1425 040 0.0 )
210= 5 3150 1,25 13,25 0.98 <57.0 155,90 0.0
0= 5 01525 96 158 0.43 9.0 0.0 0.0
30= 9 0158 0.43 15463 0.23 0.0 0.0 0.0
H0= 5 01543 0.2 15,23 0.58 0.0 0.0 0.0
0= 5 3152 0.5 150 8.5 1350 5.0 0.0
60= 9 15,0 0.5 150 0.0 0.0 0.0 0.0
37 0=4E0R

330=4E0F

WESC@R Sample Runstream #2

120=J0K T=40,
130=ACAUIRE yDN=FT10»PEN=THOKFSONL INESOL » ID=4NNNES s DF =TF LT,
140=0CRUTRE s DN=BINARY s PIN=THOMPSONCORDE, IT~00MMN00S, IF =TH UG,
150=LIR s IN=RINARY ,

16Q=DISPESEs IN=FT11 s SEN=F TLE » 1 1- 00N s [IC=5 T, DF TR TEXT=1 -
170= ’CATALBG:FILE:|hUHPSUHCDRII01;IJ-_sRF 999"
1BO=DELETEIN=FT10,
190=IIELETE1IIH"BINARY.
200=£X1T,

21 0=DELETE +DN-F 710,

220=DELETE sIN=FINARY,

230=3EQR

240= DORTCH TEST § ~ WITH MEIR
2= ¢7=X 23 CDORDINATE SYSTEH

b= b -1 1 1 0 0
R e
M= % 7 1 -l
%0 17 15§ -1
M= 15 7 1 -
=7 11 o-n
- 105 1 -

B= 1 0% o5 o-u

1 49 -2
420=1.8 000001 0.,00001
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